
6 What does it mean to prove theorems?

We already saw many examples of different proofs in this course. Let us pause for a second and think
about various approaches and techniques that can be used for proofs. It is quite difficult to come up
with a logical and algorithmic proof theory and hence most of my explanations will be relying on some
“common sense” and intuitive understanding of what we call “a convincing explanation.”

6.1 Statements and truth tables

Proof is an explanation of why a statement is true. Therefore, I start with a very brief discussion of
what a statement is and how to determine whether a complicated statement is true or false.

A statement is a sentence which is either true or false (in this case one of the alternatives must
be fulfilled, no statement is allowed to be true and false at the same time, and this is, hopefully, in
accordance with our intuition). For example, the statement “2 is an integer” is definitely true, whereas
“1/2 is an integer” is false. We know this because we are well aware of the commonly acknowledged
definition of being an integer.

I can make new statements out of the old ones using the operations of negation (not), conjunction
(and), disjunction (or), or implication (if...then). Let me start with the simplest operation.

The negation of statement A is the statement (again, according to our intuition and common
sense), which is true when A is false and is false when A is true. I can write this in the form of a truth
table:

A not A

T F
F T

The conjunction of two statement A and B is the statement “A and B,” and here is the truth
table for it:

A B A and B

T T T
T F F
F T F
F F F

The disjunction of two statement A and B is the statement “A or B,” and here is the truth table
for it:

A B A or B

T T T
T F T
F T T
F F F

note that A or B is true if both A and B are true.
Finally, the truth table for the implication “if A then B” has the form
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A B if A then B

T T T
T F F
F T T
F F T

This truth table is probably the least intuitive out of the considered four. To convince yourself that
the values of the statements are chosen in accordance with our usual intuition consider the conditional
statement “if x is divisible by four then x is divisible by 2.” Note that this is not a statement by the
definition above because we cannot say whether it is true or false without assigning a specific value to
x. However, our experience from arithmetics tells us that this statement is true irrespective of what x
is. Now take x = 4 then x is divisible by 4 and x is divisible by 2 are both true and so is the statement.
Take x = 2, now x is divisible by 4 is false and x is divisible by 2 is true, and the whole statement is
still true. Finally x = 3 gives us the motivation to call “if false then false” a true statement.

There are various ways to say if A then B. Very often the notation A =⇒ B is used. Sometimes
people say “B if A” to mean A =⇒ B. Less obvious, “A only if B” means the same A =⇒ B (think
this out).

Two statements are called equivalent if the truth tables made from their inputs and outputs are
the same. It should be clear, for example, that the statement not not A is equivalent to A (make a
truth table if you are not convinced). Using the notion of equivalent statements we can study how
negation acts on other statement.

I claim that “not (A and B)” is the same (equivalent) to “not A or not B.” To check this built
a truth table. Similarly, “not (A or B)” is the same as “not A and not B.” What is the negation of
an implication? (Think how would you negate, e.g., “if it rains then I will take an umbrella”.) I will
give you just the result: “not (if A then B)” is equivalent to “A and not B” (it will rain and I will
not take an umbrella). Indeed

A B not B if A then B A and not B

T T F T F
T F T F T
F T F T F
F F T T F

So remember that the negation of an implication is not an implication.
With the implication I can identify several other statements. The inverse of the implication “if

A then B” is “if not A then not B.” The inverse is not logically equivalent to the original statement
(think carefully about the statement “if you are a mathematician then you are intelligent”).

The converse of “if A then B” is “if B then A.” As it can be simply checked the converse is
not equivalent to the original statement. However, sometimes it happens that both A =⇒ B and
B =⇒ A are true, and in this case we say that A and B are logically equivalent and write A ⇔ B.
Another common abbreviation is to say that A if and only if B. Keep in mind that this kind of
statement always has hidden two statements, which both must be analyzed in a proof. Yet another
language used is “A is a necessary and sufficient condition for B.” This literally mean that A =⇒ B
(A is sufficient for B, B is true if A is true) and B =⇒ A (A is necessary for B, B is true only if A
is true).
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A contrapositive of an implication is “not B implies not A.” By building a truth table, one can see
that contrapositive is equivalent to the implication, and therefore in the proofs we can always replace
the statement “A only if B” with “not B only if A” as we already did several times.

Finally, in mathematics we often mean two different things about x if we hear something like “x is
an odd number.” We may mean that “for all x, x is an odd number” or “there is an x, such that x is
an odd number.” Both of these expressions are called quantifier, the former is the universal quantifier
and the latter is the existential quantifier. In some sentences people use more than one, e.g., “for any
x there is an y such that y > x.” Clearly the last statement is true. What about “there is y such that
for any x y > x”? This is of cause false, and hence the take-home-message: be careful with the order
of the quantifiers. Convince yourself that if you negate a universal quantifier you get an existential
one and vice versa.

Now we are ready to talk about various proof techniques.

6.2 Proof techniques

Let us first set up the terminology. Definition is an explanation of the mathematical meaning of the
word. Theorem, proposition, lemma are used to denote true statements (more important is theorem,
less important is proposition, a statement that is used in proving other facts is lemma). Corollary
is a true statement that is a simple deduction of another true statement. Proof is a (convincing)
explanation why something is true. Conjecture is a statement believed to be true, but for which we
have no proof. Finally, axiom is a basic assumption that does not require proof.

6.2.1 Direct proof

The vast majority of the statements to be proved can be broken into smaller statements of the form
“if A then B.” The idea of a direct proof is to find a sequence of implications A =⇒ C1, C1 =⇒
C2, C2 =⇒ C3, . . . , Ck =⇒ B, where all the steps are almost obvious. In many cases you will need
to use the definitions and already proved results to supply the arguments for the intermediate steps.

Proposition 6.1. Let Am×p,Bp×n be upper triangular matrices. Then AB is an upper triangular
matrix.

Remark 6.2. To prove this fact we actually will need only a solid grasp of the definitions of upper tri-
angular matrix and matrix multiplication. Nothing else. Therefore the proof here is simply expanding
the definitions (in many undergraduate courses this is a very common way to find a proof, especially
when you just start a new topic and did not proceed too far yet). Recall that a matrix is called upper
triangular if all the elements below the main diagonal are zero. Mathematically, A is upper triangular
means that aij = 0 if i > j. Recall also that the i, j element of the product of two matrices is the dot
product of the i-th row of the first matrix and the j-th column of the second one. Now I need to take
the element (AB)ij for i > j and show that it is zero. This can be done by counting the number of
zero elements in both the row and the column that we multiply. Here is a formal argument.

Proof. Let a = (ai1, . . . , aip) be the i-th row of A and b = (b1j , . . . , bpj)
⊤ be column j of B. Since

both A,B are upper triangular, I have that row i of A has first i− 1 zeros and p− i+ 1 potentially
non-zero elements; column j of B has j non-zero and p − j zero entries. Since for i > j I have that
i− 1 ≥ j and hence

(AB)ij = (zero entries of a) · (non-zeroes of b) + (zeros or non-zeroes of a) · (zero elements of b) = 0.
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Here is another example from your homework.

Proposition 6.3. Let A be an invertible matrix. Then (A⊤)−1 = (A−1)⊤.

Remark 6.4. Here I am given thatA is invertible. This means, by definition, that there is matrixA−1

such that AA−1 = A−1A = I. I must show that this fact implies that A⊤(A−1)⊤ = (A−1)⊤A⊤ = I.
The last expression gives me a hint that I must look how the transposition acts on the product. A little
experimenting yields a conjecture that (AB)⊤ = B⊤A⊤. If I am able to show this, I immediately
see that my claim will be proved. So I recall that A⊤ = [a⊤ij ] = [aji] by definition and also recall the
definition of a product of two matrices. Now I can carefully write everything down.

Proof. First, (AB)⊤ = B⊤A⊤. Indeed, the left hand side is

[

n∑
p=1

aipbpj ]
⊤ = [

n∑
p=1

ajpbpi].

The right hand side is

B⊤A⊤ = [b⊤ij ][a
⊤
ij ] = [

n∑
p=1

b⊤ipa
⊤
pj ] = [

n∑
p=1

bpiajp],

and hence they are equal.
Now, using AA−1 = I and the fact that I⊤ = I I get

(AA−1)⊤ = I⊤ =⇒ (A−1)⊤A⊤ = I.

Using A−1A = I I get the second required equality, which finishes the proof. �

Remark 6.5. Note that I initially worked backward to get an idea how to prove the statement.
However, the proof itself is written in the forward direction. Remember, that proofs are always
written in the forward direction.

Here is one more important example.

Theorem 6.6. Let A be a square matrix that has either a left inverse or a right inverse, a matrix B
such that either BA = I or AB = I. Then A is invertible and B its inverse.

Proof. Assume that AB = I. I can always row reduce matrix A by multiplying with elementary
matrices from the left:

A′B = P , A′ = PA = E1 . . .EkA, P = E1 . . .Ek.

Matrix P , as a product of invertible matrices, is invertible, and hence cannot have a row of zeros.
Therefore the product A′B cannot have a row of zeros, and hence, by the definition of matrix multi-
plication, A′ cannot have a row of zeros. This means that A′ is an identity matrix, that is P is the
left inverse of A. Now, using

B = PAB = P (AB) = P ,

I see that my left inverse coincides with the right inverse.
Now assume that BA = I. From the previous I get that A is also a left inverse for B, and hence

AB = I, which concludes the proof. �
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6.2.2 Cases

A proof by cases is very similar to the direct proof. The only difference is that we can assume that
the whole statement, which we want to prove, can be broken into smaller statements, which we can
tackle individually. Here is a problem from one of the homeworks, which I will prove using two cases.

Proposition 6.7. Let A be a square matrix. Consider the block-triangular matrix

B =

[
I ∗
0 A

]
,

where ∗ denotes anything. Then detA = detB.

Remark 6.8. First of all I note that using the cofactor expansion formula for the determinant gives
the answer immediately, if an expansion with respect to the first column is used. I, however, would
like to provide a proof, which relies on the properties of the determinant. It is quite plausible that
using the row reduction on B I can transform it to a triangular form and get the desired answer.
While this is almost obvious I still need a rigorous way to write this down. To be able to do it I note
two things. First, if I take another block triangular matrix,

Ê =

[
I 0
0 E

]
,

where E is an elementary matrix, then, using the formula for the product of block matrices I get

ÊB =

[
I ∗
0 EA

]
.

Second, using the fact that Ê is also an elementary matrix if E is, I clearly see that det Ê = detE.
Now I am very close to give a proof of my proposition.

Proof. Consider two cases: A is invertible and not invertible. Assume first that A is invertible. Then
it can be represented as a product of elementary matrices A = Ek . . .E1. Since

B = Êk . . . Ê1

[
I ∗
0 I

]
,

where

Êj =

[
I 0
0 Ej

]
,

det Êj = detEj ,

and det(A1 . . .Ak) = detA1 . . . detAk, I get that detB = detA.
Now, if A is not invertible, detA = 0 and A = Ek . . .E1A

′, where A′ is in row reduced echelon
form and has a row of zeros. Using the same reasonings as above I find that

detB = detEk . . .detE1 det

[
I ∗
0 A′

]
= 0,

since the last matrix is in triangular form with zero on the main diagonal. Hence detB = detA as
required. �
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6.2.3 Contrapositive

You should recall that the implication A =⇒ B is equivalent to its contrapositive not B =⇒ not A.
Quite often the contrapositive is easier to prove. This is especially true if the statement to be proved
is negative. The negations in contrapositive will take care of this negation, since double negation is
equivalent to the statement itself.

Proposition 6.9. Let A and B be two square matrices. If B is not invertible then AB is not
invertible.

Remark 6.10. Note that the contrapositive has no negations in it: If AB is invertible then B is
invertible, which seems to be easier to prove.

Proof. Assume that AB is invertible. This means that there is matrix C such that CAB = I. Using
the associativity of matrix multiplication it implies that (CA)B = I, that is, matrix B has a left
inverse. Using the earlier result it means that B has the same right inverse, and hence is invertible. �

6.2.4 If and only if

Recall that every time you are asked to prove something of the form “if and only if” you have to deal
with two statements: if part and only if part.

Proposition 6.11. Let A be a square matrix. Then it is invertible if and only if detA ̸= 0.

Proof. (only if part) A is invertible only if detA ̸= 0. In other words, if A is invertible then detA ̸= 0.
We know that if A is invertible its row reduced echelon form is the identity matrix. Using only the
elementary operations of the first and third type I can row reduce A to a diagonal form, with all the
diagonal elements not zero. Hence, the determinant is not zero.

(if part) A is invertible if detA ̸= 0. In other words, if detA ̸= 0 then A is invertible. To prove
it, consider contrapositive “if A is not invertible then detA = 0.” If A is not invertible then its row
reduced echelon form has a row of zeros. This means that using the first and third type elementary
row operations I can put A into diagonal form with a zero on the main diagonal. Hence detA = 0. �

6.2.5 Contradiction

I know that a given sentence is either true or false, and I need to actually show that it is true. I
can assume that this statement is false and see what consequences I can deduce from it. If I am able
logically obtain that my assumption of something being false implies something clearly wrong, then
it implies that my assumption cannot be false, and therefore must be true. This is called a proof by
contradiction.

Example 6.12. Suppose that A is a 2 × 1 matrix and B is a 1 × 2 matrix. Show that C = AB is
not invertible. I will prove it by contradiction. So, let

A =

[
a1
a2

]
, B = [b1 b2], AB =

[
a1b1 a1b2
a2b1 a2b2

]
.

Assume that my matrix is invertible. This means that there is matrix D such that[
a1b1 a1b2
a2b1 a2b2

] [
d1 d3
d2 d4

]
=

[
1 0
0 1

]
.
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This means that I must have

a1b1d1 + a1b2d2 = 1,

a2b1d1 + a2b2d2 = 0.

I have that a2 ̸= 0 (otherwise I would have a row of zeros and my matrix would not be invertible),
hence b1d1 + b2d2 = 0 from the second equation. Plugging this into the first equation yields

a10 = 1,

which cannot be true for any a1. Therefore my assumption is false and AB is not invertible.

Here is a nice generalization of the previous example:

Proposition 6.13. Let A be an m × n matrix and B be n × m matrix, n < m. Then AB is not
invertible.

I am tempted to use the same strategy, but I will be soon lost into various index notations. Let
me show a much simpler direct proof.

Proof. Since n < m I know that the system Bx = 0 has a nontrivial solution. This implies that
A(Bx) = (AB)x = 0 has (the same) nontrivial solution. We know that the conditions Cx = 0 has
only a trivial solution and C is invertible are equivalent. Hence AB is not invertible. �

6.2.6 Induction

Finally consider a proof by induction. In this case we usually need to check that some property, call it
D, holds for all natural numbers {0, 1, 2, 3, . . .} (it is not necessary to start with 0, I can always start
with 1 or 2, or 55). Proof by induction consists of two steps: First, we need to check that D(0) holds
(or D(1), or D(2), or D(55)). Second, assuming that D(n) is true we need to show that D(n+ 1) is
true. Clearly, if we are able to show these two facts, this would imply that property D holds for any
n from my set. Here is a simple example.

Example 6.14. Find the formula for 1 1 1
0 1 1
0 0 1

n

.

I perform several computations1 1 1
0 1 1
0 0 1

2

=

1 2 3
0 1 2
0 0 1

 ,

1 1 1
0 1 1
0 0 1

3

=

1 3 6
0 1 3
0 0 1

 ,

1 1 1
0 1 1
0 0 1

4

=

1 4 10
0 1 4
0 0 1

 , . . .

It looks like the general answer is1 1 1
0 1 1
0 0 1

n

=

1 n n(n+ 1)/2
0 1 n
0 0 1

 ,
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but how to prove it? Let me use the induction.
Clearly, my formula holds for n = 1 and this is my base step. Now I assume that1 1 1

0 1 1
0 0 1

n

=

1 n n(n+ 1)/2
0 1 n
0 0 1


and will show that this assumption implies that my formula is true for n+ 1. I have1 1 1
0 1 1
0 0 1

n+1

=

1 1 1
0 1 1
0 0 1

n 1 1 1
0 1 1
0 0 1

 =

1 n n(n+ 1)/2
0 1 n
0 0 1

1 1 1
0 1 1
0 0 1

 =

1 n+ 1 (n+ 1)(n+ 2)/2
0 1 n+ 1
0 0 1

 ,

and I am done.

Exercise 1. Prove by induction that there are exactly n! permutations.

Theorem 6.15. The row reduced echelon form (r.r.e.f.) is unique.

Proof. I will use the induction on the number of columns.
Consider the base case n = 1. If matrix A has just one column and has all zero entries then its

r.r.e.f. is the matrix itself. If it has nonzero entries then its r.r.e.f. is (1, 0, . . . , 0)⊤ and hence unique.
Now assume that it is true for n > 1, and let A be an m× n+ 1 matrix. Denote A′ is the m× n

matrix obtained from A by removing the last column. Let B and C be r.r.e.f. of A. By the definition
of r.r.e.f. B′ and C ′ are in r.r.e.f., and by the induction assumption, A′ = B′ = C ′. Now, assume
that B ̸= C. By the reasoning above this can be true only if there is i such that bi,n+1 ̸= ci,n+1. Now,
let x = (x1, . . . , xn+1) be a solution to Bx = 0. Since B can be obtained from C by elementary row
operations, it implies that Cx = 0 as well. Therefore, (B − C)x = 0. Since B′ = C ′, this implies
that xn+1 = 0, in other words, xn+1 cannot be a free variable, and therefore the last column of both
B and C must contain pivot 1 and have all the other entries zero, moreover, this 1 must belong to
the first zero row of both B′ and C ′ and hence B = C. �
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